Protonowa rewolucja w akumulatorach?


bateria protonowa i jej twórcy
bateria protonowa i jej twórcy

Już chyba większość  nowoczesnych urządzeń elektronicznych jest zasilana z baterii litowych – od narzędzi elektrycznych, po coraz większą liczbę samochodów elektrycznych. A jednak czasy dominacji litu mogą się kończyć zanim tak na dobre się zaczęły. Naukowcy z Uniwersytetu RMIT w Melbourne w Australii (Royal Melbourne Institute of Technology) stworzyli bowiem prototyp alternatywnej baterii zasilanej węglem i wodą. Absolutna nowością jest jednak zupełnie nowa zasada działania! Jest to pierwsza w historii bateria protonowa, a przy tym jest to rozwiązanie do magazynowania energii, które wykorzystuje tanie, przyjazne dla środowiska materiały. Ale dlaczego musimy zmienić sposób, w jaki przechowujemy energię? Oto trzy rzeczy, które powinieneś wiedzieć o tym źródle energii przyszłości.

Bateria protonowa wykorzystuje łatwiej dostępne materiały

Tak natura zdecydowała, że zasoby litu na planecie są skoncentrowane tylko w kilku krajach, a inne rzadkie metale, które są wykorzystywane w bateriach litowych, są jeszcze mniej dostępnym, a tym samym bardzo drogim zasobem. W przeciwieństwie do tego, bateria protonowa ma elektrodę wykonaną z węgla, jednego z najobficiej występującego materiału na naszej planecie, i jest ładowana przez rozkład cząsteczek wody. Zaletą nowej baterii jest to, że przechowuje protony w materiale opartym na węglu, który jest tani, zaś protony pozyskiwane są z wody, która jest łatwo dostępna.

Jest ładowalna

Bateria RMIT może być podłączona do portu ładowania tak samo, jak każdy inny akumulator. To, co dzieje się dalej, jest niezwykle proste: energia elektryczna z zasilacza dzieli cząsteczki wody, generując protony, które wiążą się z węglem w elektrodzie akumulatora. Protony są następnie ponownie uwalniane, aby przejść przez ogniwo paliwowe, gdzie oddziałują z powietrzem, tworząc wodę i wytwarzając energię. Jednocześnie testowana w laboratoriach RMIT bateria protonowa okazała się bardzo efektywna. Już niewielka bateria – o powierzchni czynnej wynoszącej zaledwie 5,5 centymetrów kwadratowych  może przechowywać tyle energii na jednostkę, co dostępne w sprzedaży akumulatory litowo-jonowe.

Jest ekologiczna

Wydobywanie surowców do baterii jak lit  i inne metale ziem rzadkich, może mieć wiele konsekwencji dla środowiska, jak chociażby konieczność składowania chemikaliów w ekosystemach. Przetwarzanie materiałów przewodzących (głównie metali) wymaga znacznej ilości energii, co w dalszym ciągu najczęściej oznacza energię elektryczną pochodzącą z paliw kopalnych. Tymczasem wytwarzanie węgla, czy wody potrzebnej do tej nowej baterii ma praktycznie zerowy wpływ na środowisko; obecnie główny wpływ baterii na środowisko wynikałby z konieczności wyprodukowania energii elektrycznej wykorzystywanej do jej ładowania.

Ale czy jest?

Naukowcy z  RMIT szacują, że ich bateria protonowa może być dostępna komercyjnie w ciągu pięciu do dziesięciu lat. Czy spełni pokładane w niej nadzieje? Trudno powiedzieć – wiele obiecujących wynalazków leży bowiem w lamusie historii, gdyż nie spełniły się pokładane w nich nadzieje. Przykład ten jednak pokazuje dwie rzeczy. Po pierwsze istnieje alternatywa dla baterii litowych. A po drugie istnienie takiej alternatywy jest konieczne. Chociażby ze względu na niezwykle dynamicznie rosnące zapotrzebowanie na wydajne akumulatory, zwłaszcza jeżeli chodzi o samochody elektryczne. W końcu wszyscy nawet jeżeli nie chcemy będziemy jeździć  „na prąd”. Tania bateria, a taką byłaby bateria protonowa, może sprawić, że wreszcie samochody elektryczne będą tańsze od spalinowych.

Reklamy

Pierwszy wypadek spowodowany przez samochód autonomiczny?


selfcarOd początku testów samochodów autonomicznych firmy Google czyli od wiosny 2014 roku  do roku 2016, były one zaangażowane w prawie tuzin kolizji w Mountain View. W większości przypadków samochody Google uderzane od tyłu. Nikt nie odniósł poważnych obrażeń. A w żadnym z incydentów nie stwierdzono winy samochodu autonomicznego. Dlatego trudno się dziwić burzy jaka podniosła się po pierwszym zdarzeniu , które być może jest pierwszym odnotowanym przypadkiem, gdy wina leżała po stronie automatu. Te spore zastrzeżenia wynikają z faktu, że zdarzenie miało charakter drobnej kolizji i obie strony uznały, że nie będą prowadzić do szczegółowego rozstrzygnięcia winy. Dlatego na dzień dzisiejszy uznaje się, że winny był pojazd Google, tyle że nie sprecyzowano czy to wynik błędu oprogramowania, czy też wina leży po stronie siedzącego w pojeździe kierowcy testowego…

W czasie zdarzenia autonomiczny Lexus jechał z prędkością 2 mph (niespełna 4 km/h), kiedy wykonał ruch w bok, a jego lewy przód uderzył w prawą stronę autobusu, który jechał prosto z prędkością  około15 mph. Jak widać zdarzenie miało charakter niewielkiej stłuczki. Kierowca testowy samochodu – który zgodnie z prawem stanowym musi znajdować się na przednim siedzeniu, aby złapać kierownicę, gdy jest taka potrzeba – sądził, że autobus ustąpi i nie przejął kontroli przed kolizją. Opublikowany po zdarzeniu raport nie rozwiązuje problemu. Jednakże to co wywołało burzę to fakt, że Google w pisemnym oświadczeniu napisało: „Wyraźnie ponosimy odpowiedzialność, ponieważ gdyby nasz samochód się nie poruszył, nie byłoby kolizji”. Jak tłumaczy Chris Urmson, szef projektu auta samojezdnego Google, „Lexus poruszał się, zanim autobus zaczął przejeżdżać” i doprecyzował: „Widzieliśmy autobus, śledziliśmy autobus, myśleliśmy, że autobus zwolni, zaczęliśmy się wycofywać, pozostał jednak pewien impet”.  Zdarzenie jednak ma skutki negatywne dla Google, gdyż zaktywizowało ludzi przeciwnych robotom na ulicach.  Jak stwierdzili liderzy tego ruchu: „Najwyraźniej samochody autonomiczne Google nie mogą niezawodnie radzić sobie w codziennych sytuacjach drogowych. Musi być licencjonowany kierowca, który może przejąć kontrolę, nawet jeśli w tym przypadku kierowca testowy nie wprowadził go tak, jak powinien.”

Podsumowując zdarzenie, mimo, że niejednoznaczne najprawdopodobniej nie wpłynie negatywnie na rozwój samochodów autonomicznych.

Poduszka na dachu


poduszka powietrzna na dachu pojazdu
poduszka powietrzna na dachu pojazdu

Ford opatentował poduszkę dachową. Zdaniem autorów pomysłu poduszka ma chronić pasażerów pojazdu, gdy ten będzie dachował. To ciekawa koncepcja, Zwłaszcza w sytuacji gdy uświadomimy sobie, ze dachowanie wcale nie jest tak rzadkie. Z drugiej jednak strony zastanawia skuteczność tego rozwiązania. I to nie tylko ze względu  na trudności chociażby w uchwyceniu powodu , który wyzwoli, odpali ładunek pirotechniczny poduszki. Nie powinna bowiem ona być nadymana w każdej sytuacji, a jedynie w trakcie dachowania. Pytaniem, które wyzwala wątpliwości jest fakt, ze Ford dotąd nie zastosował swojego patentu w żadnym pojeździe pomimo, że do skutecznego opatentowania doszło już w zeszłym roku, czyli, że sam pomysł musi mieć już kilka lat. Stawia to pod znakiem zapytania skuteczność oferowanej przez taka poduszkę ochrony. A może tylko chciano zablokować pewien pomysł, co często się zdarza w amerykańskim systemie prawnej ochrony patentowej.

Bez względu jednak jak jest, należy przyklasnąć wszelkim pomysłom zmierzającym do poprawy  bezpieczeństwa biernego pasażerów pojazdów.

6×6 na prąd


nikolaNikola Motors i  Tesla Motors nie mają nic ze sobą wspólnego, z wyjątkiem ich nazwy inspirowanej przez słynnego inżyniera i fizyka Nikolę Teslę. Jednak być  może jest też coś  wspólnego, a to z powodu niedawno pokazanej  przez Nikola Motors koncepcji elektrycznego ciągnika 6×6 czym uprzedził podobny ruch Tesli.

Nikola One Study oferuje  zasięg 1200 mil (1931 km) i łączną moc ponad 2000 KM przy niebotycznym momencie obrotowym ponad 3700 Nm (5017 Nm). Tę moc i moment obrotowy Nikola One zawdzięcza sześciu silnikom elektrycznym (po jednym na każde koło) i  napędzanym gazem ziemnym, jak to ładnie nazwano, „zwiększaczem zasięgu”(Natural gas range extender), czyli generatorem prądu opartym o turbinę gazową. Przyspieszenie od 0 do 60 mph (96 km / h), z pełnym obciążeniem, trwa około 30 sekund, Co czyni ciągnik najszybszym na świecie drogowym pojazdem użytkowym, gdyż z silnikiem wysokoprężnym zajęłoby to dwa razy tyle czasu.

Moc jest dostarczana kołom przez 100 procentowy napęd elektryczny 6×6, który czerpie energię z gigantycznej baterii o pojemności 320 kWh. Pojazd wyposażony jest w system hamowania regeneracyjnego oraz w pełni niezależne zawieszenie. Producent twierdzi. że maszyna może wspiąć się na stok o nachyleniu sześciu procent ciągnąc maksymalny ładunek w tempie  65 mph (105 km /h). Dla porównania, tej samej klasy ciężarówka z silnikiem diesla, w podobnych warunkach, będzie mieć poważne kłopoty by utrzymać 35 mph (56 km/h).

Wyposażenie kabiny Nikola One też jest niezwykłe. M. in. kokpit jest wyposażony w 15-calowy ekran dotykowy, Zestaw wskaźników to 10-calowy wyświetlacz, na pokładzie dostępny jest  4G LTE internet i Wi-Fi, panoramiczne szyby, szyberdach, kamery obserwujące 306-stopni wokół pojazdu, 42-calowy telewizor, mikrofalówka, dwa pełnowymiarowe łóżka i pełnowymiarowa lodówka z zamrażarką. Zasilane są 320 kWh akumulatorem i podobno pozwalają kierowcy na pobyt w kabinie przez prawie tydzień. Oczywiście zawsze jest też dostępna turbina gazowa by podładować akumulatory.

W USA koszty operacyjne dla ciągników siodłowych z  ciężkim silnikiem Diesla  są gdzieś pomiędzy 40 a 60 centów za milę, ale Nikola Motors stwierdza, że ich maszyna jest zdolna pojechać za połowę tej kwoty, czyli 20-30 centów za milę.

Producent pracuje nad prototypem i zaczął brać rezerwacje, za 1500$. Plan jest taki, aby stworzyć program najmu na kierowców ciężarówek, aby płacić około $ 5,000 miesięcznie, co będzie zawierać opłatę leasingową, nieograniczone paliwo, nieograniczoną liczbę przejechanych mil, konserwację i gwarancję. Co 72 miesięcy lub 1.000.000 mil (1.609.344 km) będzie można otrzymać nowy pojazd, bez dodatkowych kosztów.

Ceny za Nikola One będą wahać się od $ 350.000 do $ 415000, w zależności od opcji.

Co zrobić z zużytymi oponami?


zużyte opony
Kilometry kwadratowe zużytych opon

Gdy w końcu wyrzucamy stare opony nie do końca zdajemy sobie sprawę, że ich dalszy żywot przeważnie kończy się na śmietnisku. W skali świata ledwie 30% opon podlega recyklingowi. i choć najwyższe wskaźniki recyklingu dotyczą Europy to w dalszym ciągu ponad 50% opon pozostaje nieprzetworzonych. Według ONZ świat wytwarza rocznie ponad 24 mln ton odpadów w postaci zużytych opon, z czego około 15 mln ton, jest wyrzucane na składowiska. A jest to duży kłopot. Próbowano się różnie pozbywać opon, robiono z nich nawet sztuczne morskie rafy czy falochrony. Jednak to wszystko półśrodki- opony zajmują coraz większą przestrzeń. wód jest prosty opony są trudne w recyklingu,a sam proces kosztowny.

 

Istnieją trzy główne sposoby wykorzystania starych opon:

  • spalanie na ciepło;
  • piroliza (rozkład termiczny) w celu otrzymania ciekłych produktów podobnych do oleju;
  • mechaniczne rozdrabnianie dalszego przetwarzania kauczuku miękiszu produktów gumowych.

Niestety  żaden z nich nie może być uważany za bezpieczny dla środowiska. Być może radę na to znaleźli  naukowcy Wydziału Chemii i  Środowiska Uniwersytetu w Odessie. Opracowali nową metodę recyklingu zużytych opon przez..  zamrożenie. Tyle że do temperatury ciekłego azotu Główną zaletą jest brak odpadów i pełne bezpieczeństwo dla środowiska.
Nie wystarczy tylko zamrozić opony do bardzo niskiej temperatury ciekłego azotu. „Po zamrożeniu i oddzieleniu kordu (części metalowe), guma, która jest w stanie szklistym, prasa miażdży na proszek, następnie w specjalnym rozpuszczalniku w obecności katalizatora materiał opony rozpada się na części podstawowe z których składa się guma. W rzeczywistości, sposób pozwala na pełne zregenerowanie odpadów gumowych poprzez chemiczną destrukcję łańcuchów molekularnych. A mówiąc prostymi słowami, odpady przywraca się do postaci surowców do produkcji nowych opon. O ostatecznym sukcesie metody zadecyduje oczywiście ekonomia. Kibicujemy żeby się udało.

Polska liderem światowym


tpa
Rozwiązanie z Lidzbarka stworzone przez inżynierów z TPA

Znany portal amerykański 12storylibrary.com uznał technologię zastosowaną na drogach  Lidzbarka Warmińskiego  za jedną z 12 najbardziej przełomowych technologi w transporcie.

Lecz o co chodzi?

Otóż włodarze gminy we współpracy z TPA. sp. z o.o. ( instytut badawczy firmy Strabag) wybudowali świecące w nocy ścieżki rowerowe. Niebieska ścieżka rowerowa, która świeci po zmroku powstała na szlaku prowadzącym nad Jezioro Wielochowskie. Nawierzchnia tej innowacyjnej drogi rowerowej zawiera tzw. luminofory, są to specjalne substancje syntetyczne, które mają zdolność gromadzenia światła – ładują się za pomocą światła dziennego, a następnie nocą promieniują zgromadzoną energię w postaci delikatnego, ale wyraźnego  po zmroku , blasku. W ciągu dnia ścieżka rowerowa ma również kolor niebieski. Jak twierdzą autorzy tego niezwykłego rozwiązania chodziło o stworzenie optymalnej kompozycji kolorystycznej z pobliskim jeziorem i naturą. Oczywiście główną motywacją było bezpieczeństwo wszystkich uczestników ruchu.
Jak wykazały testy materiał, z którego stworzono nawierzchnię ścieżki rowerowej, jest w stanie świecic widocznym światłem przez ponad 10 godzin. Daje to pewność, że przez całą noc ścieżka emituje będzie jaśniała niebieskim światłem. Każdego zaś dnia ponownie będzie  gromadzić by wieczorem przystąpić „do pracy”. Co najistotniejsze, efekt zawdzięczamy wyłącznie specyficznym właściwościom użytego kruszywa, bez konieczności wspomagania dodatkowymi źródłami energii.

Wykorzystane zjawisko nie jest nowe, każdy, kto posiada zegarek z tarczą z elementami wykonanymi luminoforu, może cieszyć się również tym rozwiązaniem. Jednakże zastosowanie luminoforu w drogownictwie jest nowością. Pierwsze próby kilka lat temu podjęli Holendrzy jednakże zarówno koszt jak i ostateczny efekt nie były zachęcające. Wiele wskazuje na to, że nowe rozwiązanie z Lidzbarka wdrożone przez inżynierów z TPA jest naprawdę przełomowe. Może ono poprawić bezpieczeństwo wszystkich uczestników ruchu w stopniu nie osiągalnym dla innych rozwiązań nie wymagając przy tym żadnych dodatkowych nakładów.

Superkondensatory nie są alternatywą


Autobus elektryczny na superkondensatorach
Autobus elektryczny na superkondensatorach

Od jakiegoś czasu słychać propozycję by rozważyć tzw. superkondensatory jako alternatywne źródło energii dla samochodów elektrycznych. Pojawiają się nawet konstrukcje wykorzystujące takie źródła energii. Zalety superkondesatorów (SC) są znane i dla tych właśnie zalet wykorzystuje się je np. w systemach KERS (systemach rekuperacji energii), znanych z formuły 1. Jednakże do napędu pojazdów wykorzystuje się je tylko w pojazdach ciężkich (autobusach), gdyż tam również ich zalety mogą zostać wykorzystane a wady nie eliminują ich z gry.

Jeżeli chodzi o samochód elektryczny to w tej chwili, nawet teoretycznie, nie istnieje technologia SC, której wady nie przeważałyby nad zaletami. Pomijając zawiłości technologiczne, prawie wszystko sprowadza się do tzw.gęstości upakowania energii, tzn zdolności SC do przechowywania energii w kilogramie masy. W stosunku do akumulatora  co najmniej o rząd wielkości mniejszymi (jeżeli wziąć pod uwagę baterie na etapie laboratoryjnym to nawet trzech rzędów wielkości). Dostępne już dzisiaj akumulatory Litowo-jonowe potrafią zgromadzić około 400 Wh/kg podczas gdy niektóre superkondensatory około 20Wh/kg. I to je dyskwalifikuje.  Inną istotną wadą jest konieczność stosowania wyrafinowanej elektroniki, by skompensować fakt, że napięcie w układzie takich kondensatorów spada bardzo silnie (wykładniczo) wraz z ich rozładowywaniem. Ostatnim gwoździem do trumny dla SC (choć teoretycznie istnieje możliwość zmniejszenia tej wady) jest ich samoistne rozładowywanie- naładujesz wieczorem, rano musisz powtórzyć!

Jedyna istotna zaleta SC, to zdolność do bardzo szybkiego ładowania i  wydatkowania zgromadzonej energii, z czym współczesne baterie Litowo-jonowe jeszcze mają kłopoty. Jednakże nie jest to czynnik decydujący! Potrafimy sobie z tym poradzić, a dodatkowo nowe generacje akumulatorów, testowane obecnie w laboratoriach, są go pozbawione. Najważniejszy jest fakt, że superkondensator o tej samej masie co bateria, daje ponad 20-krotnie mniejszy zasięg! Jego więc efektywne wykorzystanie musiałby być poprzedzone budową bardzo gęstej sieci stacji ładowania! Nadzieje wiąże się co prawda z możliwością wykorzystania w tym przypadku ładowania indukcyjnego (na odległość, bez podłączania kabelków), np w trakcie postoju przed czerwonym światłem, jednak koszt infrastruktury, którą trzeba by zbudować od razu kładzie cały pomysł.

Reasumując, kondensator, dla obecnie znanych technologi, nie jest konkurentem dla baterii w zastosowaniach do napędu samochodu elektrycznego. Może być , jest i będzie wykorzystany pomocniczo, ale tylko tak.